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Price formation 
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I I· I ~ 
T Market information 

Buy/sell Price 
Supply/ Demand Order Bo ok Price 

or d e r s formation 

Market prices react to fluctuations in supply and demand. Can 
we use observations of order flow to forecast price moves? 

We call ‘price formation mechanism’ the correspondence 
between the (history of) supply and demand (orders and 
transactions) and the market price: 

Price(t + !t) =F(Price history([0,t]), Order Flow([0,t])) 

Econometric models, market microstructure models, 
stochastic models and machine-learning price prediction 
models can all be thought of as models for this map F ,at 
various frequencies !t. 
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Universal vs asset-sp ecifi c mo deling 
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Price(t + !t) =F(Price history(0..t), Order Flow(0..t)) 

Is F specific to each asset or ‘universal’? 

Theoretical microstructure models implicitly assume 
‘universality’ holds 

Some empirical evidence points to existence of universal 
relations between volume, order flow and price dynamics: Kyle 
and Obizhaeva (2016), Benzaquen et al (2017),... 

Yet empirical modeling and market practice in use of 
statistical models remains asset-specific: a model for asset A 
is estimated/ trained on time series of the asset A. 

Does F vary with time? Nonstationarity is often cited as a 
reason for using recent data histories for estimating such 
models, lest some latent factors/parameters change with time. 
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Using HF order b o ok data to explore price formation 
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Computerization of markets has unleashed PetaBytes of high 
frequency data on transactions, order flow and order book 
dynamics in listed markets. 

Intuitively, this huge amount data contains a lot of 
information which one should be able to use to investigate 
models of price formation and build/improve intraday risk 
models and price prediction models. 

Yet most statistical models are based on price/returns only, 
ignoring the wealth of information contained in order flow. 

Machine learning (ML) can potentially be helpful for 
exploring such large data sets. ML approaches are increasingly 
used in trading for short term prediction but there has been 
no systematic study of their performance and stability. 

Most case studies using ML on high frequency data are 
limited to a few assets and periods less than a month. 
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Limit order book: snapshot of supply and demand 

200 $80.03 

0 $80.02 

400 $80.01 

1100 $80.00 

1000 $79.99 

500 $79.98 

50 $79.97 

400 $79.96 

In electronic markets we observe the limit order book every 
microsecond. What can we learn about price formation from this 
data? 5 / 36 



Estimation of high-dimensional functions 
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Abstract formulation: estimating a (scalar-valued) function 
defined on a (very) high dimensional (but bounded) domain 

F :[0, 1]
N 
!A ⇢R 

from data set (xi , F (xi )), i =1..n. A is often a finite or 
bounded set. 

Problem: Data dimension N is large. 

Linear representation: approximate F by linear combination PN
FN = then estimate ak from data b 

k=1 ak fk 

Curse of dimensionality: to get kFFbN k✏ we need 
N ⇠✏d : exponentially many elements 

6 / 36 



Nonlinear representation of high-dimensional functions 
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Representation of high dimensional functions by linear 
combination and compositions of single-variable functions 
Kolmogorov Representation theorem (Kolmogorov 1957, 
Arnold 1957, Lorentz 1962, Sprecher 1965, Ruschendorf & 
Thomsen 1997,...) 
Given N 1 there exists (universal) single-variable functions 

k,p : R ! R, k =1..N such that any continuous function 
F :[0, 1]N ! R can be represented as the sum of at most 
2N + 1 functions obtained by adding k,p(.) and composing 
them with 2N + 1 single-variable functions: 

01 
2N+1 N XX 

F (x)= ' q @ k,p(xp)A . 
k=0 p=1 

All functions evaluations are one-dimensional. 

k,p do not depend on F . 
Related to Hilbert’s 13th problem. 
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Approximation by iterated composition of scalar functions 
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Constructive approach: fix ', parameterize k,p 

Activation function: Let  ' : R ! [0, 1] be a monotone increasing 
function with '( �1) = 0, '(1) = 1. 
Example: '(x) = 1/(1 + exp( x)). 
Denote by L' the set of functions of the form 

pX 
(x) =  ai ' (< Wi , x >) Wi 2 RN , a 2 RN 

i=1 

Any function f 2 L' has the form: f = ga ' gW 

where gW are a ne functions with coe cients W . 
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Neural network representation 

�

�

PnA function (x) =  ' ( k=1 wk xk ) in  L' may be represented as a 
neuron with synaptic weights W = (w1, ...wn) and  activation 
function ' 

Summation 
x1 w1 

⌃ 
Activation 

Output function 
Inputs xk wk ' (x) 

xn wn 

Weights 
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Universal approximation theorem 

� � �

� � � �

�
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Any continuous function can be approximated uniformly on 
compact sets by composing such functions (Hecht-Nielsen 1989, 
Hornik et al 1989, Hornik 1991, Kurkova 1992,...): 

Theorem (Universal approximation theorem) 

Let ' : R ! [0, 1] a non-constant activation function and 
F : [0, 1]N ! A ⇢ R. Then  for  any  ✏ > 0 there exists k 2 N, 
p,i 2 L', 1, ...,  k 2 L' such that 

| F (x1, ..., xN ) 
kX 

p=1 

p 1,i (x)|  ✏ 

This can be represented to a neural network with: 
-one input layer with kN neurons p,i , p = 1..k , i = 1..N 
-one ‘hidden’ layer with k neurons: 1, ...,  k 
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Neural network representation 
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�a------. 

This approximation corresponds to a 2-layer neural network with 
one input layer and one hidden layer: 

x0 

x1 

. 
. . . 

xN k,N 

Input 

1,1 

layer 

Data Hidden layer 

p,i 
. . 

1 

2 

. . . 

k 

Output 
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Deep neural networks 

� � � � � � �
�

More generally networks with many layers (‘deep’) have been 
shown to be very e↵ective for learning high dimensional functions 
from extremely large data sets: these lead to approximations of 
type 

f✓ = ' g✓k ' g✓k 1 ... ' g✓1 

where g✓i (x) =< ✓i , x >, '(y) = 1/(1 + exp( y)) 

x0 

x1 

. . . 

xN 

✓1,1 

✓1,2 
. . . 

✓1,m 

✓2,1 

✓2,2 

. . . 

✓2,m 

y = f✓(x) 

Input layer Hidden layer Hidden layer 
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Supervised Deep learning 

� � � � � � �
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f✓(x) =  ' ' ... ' (x) (x) =< ✓i , x >g✓k g✓k 1 g✓1 g✓i 

The weights ✓i are estimated by minimizing an objective function 
(negative log-likelihood, relative entropy) over data sample. 
K layers, m neurons per layer ) Km2 ' 105 106 weights 
Suitable for non-parametric pattern recognition in large data sets. 

x0 

x1 

. . . 

xN 

✓1,1 

✓1,2 
. . . 

✓1,m 

✓2,1 

✓2,2 

. . . 

✓2,m 

y = f✓(x) 
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Data: 
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3 years of tick-by-tick NASDAQ limit order book data for 
1000 NASDAQ stocks (Jan 1, 2014-March 31, 2017) 

All quotes and trades for NASDAQ stocks: >hundred billion 
order book events 

Training set: Jan 2014-Dec 2015, Test set: 2016-2017 
months 

Let ⌧1,⌧2,... be the times at which price changes occur. 

Prediction target used to assess out of sample performance: 

P[!Mid-Price⌧k+1 >0|Order Book History for t <⌧k ] 
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Prediction of price moves from order fl ow 
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P[!Mid-Price⌧k+1 = k|X0:⌧k ]= f✓(X⌧k , h⌧k ) 

Classification problem : e.g. k 2 {< 1, 1, +1,> +1} 

Xt : state of order book 

ht : features learned from past order flow < t 

Di↵erent choices for model specification 

Cox process with Linear (Vector AutoRegressive) features: 
ht = AXt�T :t + D, f✓ = logistic function 

1
P[!Mid-Price⌧k+1 = k|X0:t ]= 1+exp(�✓.ht ) 

Multilayer (‘deep’) neural network: iteration of 
linear combination g✓i (x)=< ✓i , x >+ 
activation function '(y)=1/(1 + exp( y)): 

1 
= '' ... ''(y)= f✓ g✓k g✓k 1 g✓1 

1+ exp( y) 

ht�1 = ' g✓n 
0 ... ' g✓0 (ht�1, Xt�T :t ) 1 
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Architecture: Recurrent Long-Short Term Memory network 
(Hochreiter & Schmidhuber 1997) 
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Network architecture: Long/ Short Term Memory 

Pred1ct10nfort1met+l Predlctlonf0ftimet+2 

l l Backpropagat10n through time --------- ◄- - - - -

11111 

1 I 
Order book att1me t Order book at time t+l 

Figure: At each observation time the LSTM network accepts as an input 
the current order book data and the internal state from the previous 
times. Training of the model requires backpropagation back through 
previous times. 
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Architecture of LSTM network 

�

� �

� �

The internal state ht includes a memory cell Mt which can 
e ciently represent the history of X . 

Mt = Forget Gatet Mt�1 + Input Gatet g(Xt , ht�1; ✓), 

Forget Gatet , Input Gatet = f (Xt , ht�1; ✓), 

A deep LSTM network can be constructed by stacking multiple 

LSTMs (each with its own internal state). 
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Sup ervised learning 
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P[!Mid-Price⌧k+1 = k|X0:⌧k ]= f✓(X⌧ �k , h⌧k ) 
Supervised learning= estimating ✓ using a (large) data sample 
in order to minimize an in-sample loss function 
Here: minimize Relative entropy of forecasted distribution 
with respect to empirical distribution 
Large models : hundreds of thousands of parameters. 
Optimization method: stochastic gradient descent wrt ✓ 

For such large data sizes, naive training/ optimization 
algorithms do not scale properly: need to use carefully 
designed, scalable algorithms which can handle memory 
constraints and computational speed in an e cient manner: 
Asynchronous Stochastic Gradient Descent. 
Gradient computed using ‘BackPropagation in time’ = chain 
rule applied recursively to ', g✓k , ', ... 
Large computational expense: use a cluster of 500 GPUs 

Each GPU allows for parallelization across thousands of cores 
19 / 36 



Figure: Calculations were done on the National Center for 
SuperComputing Applications (NCSA) BlueWaters supercomputer in 
Illinois (USA). 
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Asynchronous stochastic gradient descent 

Oata 

Compressed in HOFS and 
located In Online Storage 

Model is stored on the parameter server node 

Ill Ill ··Ill 

Figure: The dataset, which is too large to be held in the nodes’ memories, 
is stored on the Online Storage system. Batches of data are randomly 
selected from all stocks and sent to the GPU nodes. Gradients are 
calculated on the GPUs and then the model is asynchronously updated. 
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Comparison of Si n gle-Sto ck Mo del w ith Join t Mo del 
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Train individual models for each stock (single-stock model) 

Train a joint model for all stocks using data from all stocks 

Objective function: cross-entropy (i.e., average negative 
log-likelihood) 

Evaluation metric: out-of-sample forecast accuracy of 
direction of next price move = % of out-of-sample events 
where model predicts correct direction of price move 

Benchmark: Random forecast (coin flip) leads to close to 50% 
accuracy 
If joint model is more accurate than the single-stock model, 
this implies: 

Universal structure of limit order books for di↵erent stocks 
Universal structure can be taken advantage of to develop more 
accurate models 
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Comparison with linear models 

40 

35 

55 60 
lncreaseinaccuracyin% 

65 
Accuracyin% 

70 75 80 

Figure: Comparison with linear models: out of sample prediction accuracy 
for direction of next price move across 500 stocks and out-of-sample 
results reported for June-August, 2015. Left: increase in accuracy for 
stock-specific deep neural networks vs stock-specific linear models. Right: 
universal deep neural network (red) vs  stock-specific  linear models  (blue). 
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Universality of price formation mechanism 

50 

40 

30 

20 

10 

0 
-8 -6 -4 -2 0 2 4 6 8 

Increase in accuracy in % 

Figure: Universal vs stock-specific models, both estimated via deep 
networks with 3 LSTM layers followed by a ReLU layer of 50 units. 
Out-of-sample price prediction accuracy across 489 stocks, June-August, 
2015. 
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Universal vs stock specific models 
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Superiority of the universal model trained on all stocks can be 
traced back to the availability of a larger, richer and more diverse 
set of scenarios for the universal model: improvement in forecast is 
highest for stocks with lower sample size. 
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Universal model generalizes to stocks it was not trained on 

JO 

65 70 75 
Accuracy in% 

80 85 90 

Figure: Performance on approximately 500 new stocks which the model 
has not been trained on. Out-of-sample accuracy for June-August, 
2015. Training sample: January 2014-May 2015. 
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Transfer Learning: Universal  model  generalizes  to  stocks  
it was not trained on 

Model Comparison Average increase in accuracy 

Stock-specific 25/25 1.45% 
Universal 4/25 -0.15% 

Table: Comparison of universal model trained on stocks 1-464 versus (1) 
stock-specific models for stocks 465-489 and (2) universal model trained 
on all stocks 1-489. Second column = fraction of stocks where the 
universal model trained only on stocks 1-464 outperforms models (1) and 
(2). 3rd column = average increase in accuracy. Out-of-sample results 
for June-August, 2015. 
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Why do es the universal mo del outp erform sto ck-sp ecifi c 
mo dels? 

Universal model is trained on a sample which roughly 500 
times larger than any stock-specific sample and contains a 
much richer and more diverse set of scenarios. 

For example, while a given stock may not have experienced 
high volatility over a given year, there are always stocks in the 
sample which will have experienced flash crashes, high 
volatility, rally etc during the same period. 

This is roughly equivalent to training a single stock model on 
1000 years of data! 

Diversity + data size outweigh other learning strategies such 
as training sector by sector, separating into large/small tick 
stocks etc. Such ad-hoc/a priori clustering methods reduce 
sample size but do not improve performance. 
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Stationarity across time 

JO 
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Figure: Performance on 500 out-of-sample stocks. 
Left: out-of-sample accuracy reported for June-August, 2015. 
Right: out-of-sample accuracy reported forJanuary-March, 2017. 
Training data: January 2014-May 2015. 
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Stationarity argues for longer training history 
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The vast majority of time series models used in trading and 
risk management are estimated over short time windows due 
to worries about non-stationarity. 

For intraday modeling often this window is extremely short. 

Our results show otherwise: once the nonlinearities are 
correctly taken into account, the underlying model is stable 
and stationary months out of sample! 
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Size of training set Average increase in accuracy 

1 month 7.2% 
3 months 3.7% 
6 months 1.6% 

Table: Comparison of deep learning models trained on entire training set 
(19 months) against deep learning models trained for shorter time 
periods. Models are trained to predict the direction of next mid-price 
move. Second column shows average increase in accuracy from using 
longer history. Out of sample results for 50 stocks, August, 2015. 
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Price formation is history-dependent 

�

Increase in accuracy in % 

Figure: Comparison of a LSTM network with a feedforward neural 
network. Models are trained to predict the direction { 1, +1} of next 
mid-price move. Comparison for approximately 500 stocks and 
out-of-sample results reported for June-August, 2015. 
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Price formation is history-dependent 
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Figure: Increase in accuracy for 5000 events (⇠ 2 hours) versus 100 
events. 1, 000 stocks in out-of-sample period June-August 2015. 
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Insights from Deep Lear ning: summary 
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Using a large-scale Deep Learning approach applied to a 
large high-frequency database of electronic market 
transactions and quotes for US equities, we uncover 
non-parametric evidence for the existence of a universal and 
stationary price formation mechanism, stable across stocks, 
sectors and time, which captures the nonlinear relations 
between price fluctuations and order flow. 

This universal price formation model exhibits stable 
out-of-sample prediction accuracy across time, for a wide 
range of stocks from di↵erent sectors. 

Interestingly, these results also hold for stocks which are not 
part of the training sample! 
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Summary 
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e 
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Deep Learning approach applied to high frequencyt order flow 
uncovers evidence of a universal price formation model 
mapping the recent order book history and order flow to price. 
Universality: model is stable across stocks and sectors, 
insensitive to large tick/small tick features etc. Universal 
model beats stock-specific models, even for stocks not in 
training sample, showing that features captured are not 
stock-specific. 
Stationarity: model performance is stable across time, even a 
year out of sample without any adjustment to model. 

Evidence of path-dependence in price formation: prices 
depend on the history of supply and demand, not just the 
instantaneous snapshot of orders. Including several hours of 
order flow history as input improves prediction accuracy. 

Ability to generalize (‘transfer learning’): model extrapolates 
well to new/out of sample stocks and out-of-sample periods. 
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For more details: 

R Cont,  J Sirignano (2018)  
Universal Features of Price Formation in Financial 

Markets: Perspectives From Deep Learning 
https://ssrn.com/abstract=3141294 

To appear in Quantitative Finance. 
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